Inactivation of Soybean Trypsin Inhibitor by Dielectric-Barrier Discharge Plasma and Its Safety Evaluation and Application

Author:

Xu Ye,Sun Yu,Huang Kunlun,Li Jingjing,Zhong Chongshan,He XiaoyunORCID

Abstract

The trypsin inhibitor (TI) is one of the most important anti-nutritive elements in soybeans. As a new nonthermal technology, dielectric-barrier discharge (DBD) cold plasma has attracted increasing attention in food processing. In this research, we investigated the effect of dielectric-barrier discharge (DBD) plasma treatment on soybean trypsin inhibitor content and its structure, evaluated TI toxicity and the safety of its degradation products after treatment with DBD technology in vitro and in vivo, and applied the technology to soybean milk, which was analyzed for quality. Using the statistical analysis of Student’s t-test, the results demonstrated that DBD plasma treatment significantly decreased the content of TI (33.8 kV at 1, 3, or 5 min, p < 0.05, p < 0.01, p < 0.001) and destroyed the secondary and tertiary structures of TI. TI was toxic to Caco-2 cells and could inhibit body weight gain, damage liver and kidney functions, and cause moderate or severe lesions in mouse organ tissues, whereas these phenomena were alleviated in mice treated with degradation products of TI after DBD plasma treatment under the optimal condition (33.8 kV at 5 min). The content of TI in DBD-treated soymilk was also significantly reduced (p < 0.001), while the acidity, alkalinity, conductivity, color, and amino acid composition of soymilk were not affected, and there were no statistical differences (p > 0.05). In summary, DBD plasma is a promising non-thermal processing technology used to eliminate TI from soybean products.

Funder

Hebei Science and Technology Project

National Key Research and Development Program of China

2115 Talent Development Program of China Agricultural University

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3