Abstract
Arabinoxylan (AX) has been associated with alleviating intestinal barrier damage, and different structures of AX give rise to different effects on the intestinal barrier. This study investigated the main structural characteristics of AX, whose functional properties are attributed to alleviating intestinal barrier damage, and clarified their underlying mechanisms. An in vitro Caco-2 cell model was established to investigate the intestinal barrier effects of AX with various degrees of substitution (Ds) and molecular weight (Mw), with an added MyD88 inhibitor to verify the signaling pathways. Arabinoxylan treated with endo-1,4-β-xylanase (AXX) with higher Ds and Mw showed stronger physiological activity, which might be correlated with the uronic acid and bound ferulic acid contents in AXX. Moreover, AXX alleviated the intestinal barrier damage by upregulating the transepithelial electrical resistance (TER) and alleviating the decrease of claudin-1 (p < 0.05). AXX regulated the expression of inflammatory factors IL-2, TNF-α, IL-6 and IL-10 (p < 0.05). In addition, AXX reduced the intestinal barrier damage induced via inhibiting the TLRs/MyD88/NF-κB pathway and activating the TLRs/PKC pathway. Thus, AX with higher Ds and Mw might be better in alleviating intestinal barrier damage, and MyD88 might be the key point of AXX to identify these signaling pathways.
Funder
National Natural Science Foundation of China
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献