Screening of Yeasts Isolated from Baijiu Environments for Producing 3-Methylthio-1-propanol and Optimizing Production Conditions

Author:

Ma Jinghao,Cheng Liujie,Zhang Yujiao,Liu Yuchun,Sun Qi,Zhang Jie,Liu Xiaoyan,Fan GuangsenORCID

Abstract

3-Methylthio-1-propanol (3-Met) is widely used as a flavoring substance and an essential aroma ingredient in many foods. Producing 3-Met by microbial transformation is green and eco-friendly. In the present study, one strain, YHM-G, which produced a high level of 3-Met, was isolated from the Baijiu-producing environment. Strain YHM-G was identified as Hyphopichia burtonii according to its morphological properties, physiological and biochemical characteristics, and ribosomal large subunit 26S rRNA gene D1/D2 domain sequence analysis. The optimal conditions for 3-Met production by YHM-G were obtained by single factor design, Plackett–Burman design, steepest ascent path design and response surface methodology as follows: 42.7 g/L glucose, pH 6, 0.9 g/L yeast extract, 6 g/L L-methionine (L-Met), culture temperature 28 °C, shaking speed 210 rpm, loading volume 50 mL/250 mL, inoculum size 0.5% (v/v), culturing period 48 h and 2.5 g/L Tween-80. Under these optimal conditions, the 3-Met production by strain YHM-G was 3.16 g/L, a value 88.1% higher than that before optimization. Strain YHM-G can also produce a variety of flavor compounds that are important for many foods. This strain thus has the potential to increase the abundance of 3-Met in some fermented foods and enhance their aroma profiles.

Funder

Technological Innovation Service Capacity Building-Basic Scientific Research Expenses

National Natural Science Foundation of China

Open Research Fund Program of Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology

General Project of Scientific Research Program of Beijing Municipal Education Commission

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3