Lactiplantibacillus plantarum LOC1 Isolated from Fresh Tea Leaves Modulates Macrophage Response to TLR4 Activation

Author:

Suzuki Masahiko,Albarracin Leonardo,Tsujikawa Yuji,Fukuyama Kohtaro,Sakane Iwao,Villena JulioORCID,Kitazawa HarukiORCID

Abstract

Previously, we demonstrated that Lactiplantibacillus plantarum LOC1, originally isolated from fresh tea leaves, was able to improve epithelial barrier integrity in in vitro models, suggesting that this strain is an interesting probiotic candidate. In this work, we aimed to continue characterizing the potential probiotic properties of the LOC1 strain, focusing on its immunomodulatory properties in the context of innate immunity triggered by Toll-like receptor 4 (TLR4) activation. These studies were complemented by comparative and functional genomics analysis to characterize the bacterial genes involved in the immunomodulatory capacity. We carried out a transcriptomic study to evaluate the effect of L. plantarum LOC1 on the response of murine macrophages (RAW264.7 cells) to the activation of TLR4. We demonstrated that L. plantarum LOC1 exerts a modulatory effect on lipopolysaccharide (LPS)-induced inflammation, resulting in a differential regulation of immune factor expression in macrophages. The LOC1 strain markedly reduced the LPS-induced expression of some inflammatory cytokines (IL-1β, IL-12, and CSF2) and chemokines (CCL17, CCL28, CXCL3, CXCL13, CXCL1, and CX3CL1), while it significantly increased the expression of other cytokines (TNF-α, IL-6, IL-18, IFN-β, IFN-γ, and CSF3), chemokines (IL-15 and CXCL9), and activation markers (H2-k1, H2-M3, CD80, and CD86) in RAW macrophages. Our results show that L. plantarum LOC1 would enhance the intrinsic functions of macrophages, promoting their protective effects mediated by the stimulation of the Th1 response without affecting the regulatory mechanisms that help control inflammation. In addition, we sequenced the LOC1 genome and performed a genomic characterization. Genomic comparative analysis with the well-known immunomodulatory strains WCSF1 and CRL1506 demonstrated that L. plantarum LOC1 possess a set of adhesion factors and genes involved in the biosynthesis of teichoic acids and lipoproteins that could be involved in its immunomodulatory capacity. The results of this work can contribute to the development of immune-related functional foods containing L. plantarum LOC1.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3