Pasting and Rheological Properties of Starch Paste/Gels in a Sugar-Acid System

Author:

Boonkor PloyfonORCID,Sagis Leonard M. C.ORCID,Lumdubwong NamfoneORCID

Abstract

This study was to investigate the impact of granule size, amylose content, and starch molecular characteristics on pasting and rheological properties of starch paste/gels in neutral (water) and sugar–acid systems. Normal rice starch (RS), waxy rice starch (WRS), normal tapioca starch (TS), and waxy tapioca starch (WTS) representing small-granule starches and intermediate-granule starches respectively, were used in the study. Impacts of granule size, AM content, and their synergistic effects resulted in different starch susceptibility to acid hydrolysis and interactions between starch and sucrose-water, yielding different paste viscosities in both systems. The high molecular weight (Mw¯) and linearity of amylopectin and amylose molecules increased the consistency of starch pastes. RS produced a stronger and more brittle gel than other starch gels in both neutral and sugar–acid systems. The results indicated the impact of the effect of granule size and amylose content on starch gel behaviors. Properties of waxy starch gels were mainly governed by amylopectin molecular characteristics, especially in the sugar–acid system. Adding sugar and acid had minor impacts on starch gel behaviors in the linear viscoelastic (LVE) region but were most evident in the nonlinear response regime of starch gels as shown in the Lissajous curves at large oscillatory strain.

Funder

Kasetsart University

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference55 articles.

1. BeMiller, J., and Whistler, R. (2009). Starch, Academic Press. [3rd ed.].

2. Bertoft, E. (2017). Understanding Starch Structure: Recent Progress. Agronomy, 7.

3. Sjöö, M., and Nilsson, L. (2018). Starch in Food, Woodhead Publishing. [2nd ed.].

4. Effect of tapioca starch addition on rheological, thermal, and gelling properties of rice starch;Sun;LWT Food Sci. Technol.,2015

5. The influence of starch pore characteristics on pasting behaviour;Fortuna;Int. J. Food Sci. Technol.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3