Investigating Changes in pH and Soluble Solids Content of Potato during the Storage by Electronic Nose and Vis/NIR Spectroscopy

Author:

Khorramifar AliORCID,Sharabiani Vali RasooliORCID,Karami HamedORCID,Kisalaei Asma,Lozano JesúsORCID,Rusinek RobertORCID,Gancarz MarekORCID

Abstract

Potato is an important agricultural product, ranked as the fourth most common product in the human diet. Potato can be consumed in various forms. As customers expect safe and high-quality products, precise and rapid determination of the quality and composition of potatoes is of crucial significance. The quality of potatoes may alter during the storage period due to various phenomena. Soluble solids content (SSC) and pH are among the quality parameters experiencing alteration during the storage process. This study is thus aimed to assess the variations in SSC and pH during the storage of potatoes using an electronic nose and Vis/NIR spectroscopic techniques with the help of prediction models including partial least squares (PLS), multiple linear regression (MLR), principal component regression (PCR), support vector regression (SVR) and an artificial neural network (ANN). The variations in the SSC and pH are ascending and significant. The results also indicate that the SVR model in the electronic nose has the highest prediction accuracy for the SSC and pH (81, and 92%, respectively). The artificial neural network also managed to predict the SSC and pH at accuracies of 83 and 94%, respectively. SVR method shows the lowest accuracy in Vis/NIR spectroscopy while the PLS model exhibits the best performance in the prediction of the SSC and pH with respective precision of 89 and 93% through the median filter method. The accuracy of the ANN was 85 and 90% in the prediction of the SSC and pH, respectively.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3