Effect of Narrowband UV-B Irradiation on the Growth Performance of House Crickets

Author:

Psarianos Marios,Fricke Anna,Ojha Shikha,Baldermann Susanne,Schreiner MonikaORCID,Schlüter Oliver K.ORCID

Abstract

Indoor co-cultivation systems can answer to the need for sustainable and resilient food production systems. Rearing organisms under light-emitting diodes (LEDs) irradiation provides the possibility to control and shape the emitted light spectra. UV-B-irradiation (280–315 nm) can positively affect the nutritional composition of different plants and other organisms, whereas information on edible insects is scarce. To evaluate the potential effect of the photosynthetically active radiation (PAR) and LED-emitting LEDs on the rearing and nutritional quality of edible insects, house crickets (Acheta domesticus) were reared from the age of 21 days under controlled LED spectra, with an additional UV-B (0.08 W/m2) dose of 1.15 KJm2 d−1 (illuminated over a period for 4 h per day) for 34 days. UV-B exposure showed no harm to the weight of the crickets and significantly increased their survival by ca. 10% under narrowband UV-B treatment. The nutritional composition including proteins, fat and chitin contents of the insects was not affected by the UV-B light and reached values of 60.03 ± 10.41, 22.38 ± 2.12 and 9.33 ± 1.21%, respectively, under the LED irradiation. Therefore, house crickets can grow under LED irradiation with a positive effect of narrowband UV-B application on their survival.

Funder

Federal Ministry of Education and Research

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference41 articles.

1. The future of food and agriculture–trends and challenges. Annu. Rep., 2017. 296.

2. Faostat, F. Food and Agriculture Organization of the United nations-Statistic Division. 2022.

3. Schmidt, J.H., and Merciai, S. Life cycle assessment of the global food consumption. Proceedings of the 9th International Conference LCA of Food.

4. Assessing sustainability of agriculture through water footprint analysis and in-stream monitoring activities;D’Ambrosio;J. Clean. Prod.,2018

5. Gomiero, T. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability, 2016. 8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3