Abstract
The detection of both viable and viable but non-culturable (VBNC) Escherichia coli O157:H7 is a crucial part of food safety. Traditional culture-dependent methods are lengthy, expensive, laborious, and unable to detect VBNC. Hence, there is a need to develop a rapid, simple, and cost-effective detection method to differentiate between viable/dead E. coli O157:H7 and detect VBNC cells. In this work, recombinase polymerase amplification (RPA) was developed for the detection of viable E. coli O157:H7 through integration with propidium monoazide (PMAxx). Initially, two primer sets, targeting two different genes (rfbE and stx) were selected, and DNA amplification by RPA combined with PMAxx treatment and the lateral flow assay (LFA) was carried out. Subsequently, the rfbE gene target was found to be more effective in inhibiting the amplification from dead cells and detecting only viable E. coli O157:H7. The assay’s detection limit was found to be 102 CFU/mL for VBNC E. coli O157:H7 when applied to spiked commercial beverages including milk, apple juice, and drinking water. pH values from 3 to 11 showed no significant effect on the efficacy of the assay. The PMAxx-RPA-LFA was completed at 39 °C within 40 min. This study introduces a rapid, robust, reliable, and reproducible method for detecting viable bacterial counts. In conclusion, the optimised assay has the potential to be used by the food and beverage industry in quality assurance related to E. coli O157:H7.
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献