Characterization of Tenebrio molitor Larvae Protein Preparations Obtained by Different Extraction Approaches

Author:

Gkinali Alkmini-AnnaORCID,Matsakidou AnthiaORCID,Paraskevopoulou AdamantiniORCID

Abstract

Edible insects have recently attracted research attention due to their nutritional value and low environmental footprint. Tenebrio molitor larva was the first insect species to be classified by European Food Safety Authority (EFSA) as safe for human consumption. However, it is thought that the incorporation of edible insect as an ingredient in a food product would be more appealing to consumers than being visible. The aim of the present study was to determine the physicochemical properties of the larvae meal and protein concentrates. Different methods to extract and recover proteins from defatted (DF) Tenebrio molitor larvae were applied; i.e., alkaline extraction (DF-ASP); isoelectric precipitation after alkaline extraction (DF-AIP); and NaCl treatment (DF-SSP), and the obtained protein fractions were characterized. The DF-ASP exhibited the highest protein extraction/recovery efficiency (>60%), while it was the most effective in decreasing the interfacial tension at the oil/water (o/w) interface. The DF-AIP had the highest protein content (75.1%) and absolute values of ζ-potential and the best ability to retain water (10.54 g/g) and stabilize emulsions at pH 3.0. The DF-SSP protein preparation had the highest oil binding capacity (8.62%) and solubility (~88%) at acidic pHs and the highest emulsifying activity (~86 m2/g). Electrophoresis of the protein preparations revealed proteins with different molecular weights, while the protein secondary structure was dominated by β-structures and α-helix. Protein concentrates with different properties were able to be recovered from Tenebrio molitor larvae, that could affect their interactions with other food ingredients and their behavior during processing or storage. These findings would be valuable guidance for the technological exploitation of larvae protein preparations in the development of food formulations.

Funder

Hellenic Foundation for Research and Innovation

General Secretariat for Research and Innovation

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference51 articles.

1. van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., and Vantomme, P. (2013). Edible Insects: Future Prospects for Food and Feed Security, Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/3/i3253e/i3253e.pdf.

2. The psychology of eating insects: A cross-cultural comparison between Germany and China;Hartmann;Food Qual. Prefer.,2015

3. Grunert, K.G. (2017). Consumer Trends and New Product Opportunities in the Food Sector, Wageningen Academic Publishers.

4. European Parliament and Council (2015). Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. Off. J. Eur. Union, L327, 1–22. Available online: https://eur-lex.europa.eu/legalcontent/EN/TXT/PDF/?uri=OJ:L:2015:327:FULL&from=EN.

5. EFSA (2021). Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3