Experimental Study of Garlic Root Cutting Based on Deep Learning Application in Food Primary Processing

Author:

Yang Ke,Yu Zhaoyang,Gu Fengwei,Zhang Yanhua,Wang Shenying,Peng Baoliang,Hu Zhichao

Abstract

Garlic root cutting is generally performed manually; it is easy for the workers to sustain hand injuries, and the labor efficiency is low. However, the significant differences between individual garlic bulbs limit the development of an automatic root cutting system. To address this problem, a deep learning model based on transfer learning and a low-cost computer vision module was used to automatically detect garlic bulb position, adjust the root cutter, and cut garlic roots on a garlic root cutting test bed. The proposed object detection model achieved good performance and high detection accuracy, running speed, and detection reliability. The visual image of the output layer channel of the backbone network showed the high-level features extracted by the network vividly, and the differences in learning of different networks clearly. The position differences of the cutting lines predicted by different backbone networks were analyzed through data visualization. The excellent and stable performance indicated that the proposed model had learned the correct features in the data of different brightness. Finally, the root cutting system was verified experimentally. The results of three experiments with 100 garlic bulbs each indicated that the mean qualified value of the system was 96%. Therefore, the proposed deep learning system can be applied in garlic root cutting which belongs to food primary processing.

Funder

Projects funded by the Jiangsu Modern Agricultural Machinery Equipment and Technology Demonstration and Extension

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3