An Integrated Model for Constructing Urban Ecological Networks and Identifying the Ecological Protection Priority: A Case Study of Wujiang District, Suzhou

Author:

Pan Liyu1,Gan Wenquan23ORCID,Chen Jinliu24ORCID,Ren Kunlun25

Affiliation:

1. Department of Geography, National University of Singapore, Singapore 119077, Singapore

2. School of Design, Xi’an-Jiaotong Liverpool University, Suzhou 215123, China

3. School of Environmental Sciences, University of Liverpool, Liverpool L69 3BX, UK

4. School of Design and Art, Suzhou City University, Suzhou 215104, China

5. School of Architecture, University of Liverpool, Liverpool L69 3BX, UK

Abstract

As a result of the rapid urbanisation in China, the ecological system in urban areas has become fragmented, posing a threat to ecological stability. Constructing ecological networks is considered a critical strategy to reconnect habitats, restore ecosystems and improve ecological capacity. This research aims to develop a GIS-based model that can inform urban ecological network construction and identify the priority areas for ecological protection in a given urban context. The methodological prototype considers land use, habitat conditions and human interventions from an integrated perspective and has been tested based on a case study in Wujiang District, Suzhou. The results show that (i) 30 critical ecological patches were identified, including 2 vital, 4 important and 24 general cores; (ii) 69 ecological corridors, including 15 vital, 36 important and 18 general corridors, 59 ecological nodes and 24 barriers were determined. Based on these results, this research identified priority restoration and protected areas that urgently require the restoration of ecological networks according to their importance. This research proposes further recommendations on management strategies for construction and protection guidance at macro and micro levels in accordance with existing territorial and spatial planning of Wujiang. The model developed in this research provides a scientific methodology for planning and optimising ecological networks and can serve as a basis for realising ecological protection.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3