Abstract
In the last decades, rigorous research has been carried out with the end of understanding the gas dynamic phenomenon and although different preventive techniques have been employed, even today there are numerous accidents even with the loss of life. This work analyses an alternative and innovative method of fracturing and degassing coal, by generating CO2 with a pyrotechnic device called PYROC (Pyrotechnic Break Cartridges). Medium-scale tests of generation of CO2 into coal samples are carried out and their effect is analysed comparing the initial and final permeabilities of the coal samples once the generation of CO2 has finished. These permeabilities are calculated by injecting methane. Besides, the influence of different parameters as the length of the boreholes, the pressure of the gas or the initial permeability of the coal have been analysed with a numerical simulation of one face of one of the sublevels of a mine. The results show that the method increases the safety in mining operations because it fractures and degasses the coal, increases the permeability of the coal in the borehole of injection from 9.5 mD to 31 mD, decreases the methane gas pressure below pre-detonation levels for 1 min, achieves decompressed lengths between 8 and 10 m ahead of the face with pressures of injection of 50 MPa, relaxes the total length of the borehole for initial coal permeability values equal to or greater than 0.002 mD, and allows to work with low permeable coals with high induced stresses and high methane concentrations.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献