A Coordinated Optimal Strategy for Voltage and Reactive Power Control with Adaptive Amplitude Limiter Based on Flexible Excitation System

Author:

Peng YuweiORCID,Zhang Jiancheng,Mao ChengxiongORCID,Xiong Hongtao,Zhang Tiantian,Wang DanORCID

Abstract

The flexible excitation system (FES) is a kind of novel excitation system with two channels for damping control. Besides the basic functions of traditional excitation systems, flexible excitation systems can provide reactive power support for the terminal voltage, and the large-capacity FES can improve the voltage stability and power-angle stability of synchronous generator units. However, with the increase in system capacity and the complication of control objectives, the difficulty of controller design will be increased. The randomness and fluctuation of new energy resources such as photovoltaic and wind turbines may cause disturbance and fault to the power system, which requires the coordinated control strategy for the FES to achieve stability in voltage and power angle. In this paper, the basic characteristics of FES are analyzed, and the mathematic model of the single machine infinite bus (SMIB) system based on FES is derived. The coordinated control strategy based on decoupling control of stator and rotor is proposed according to the optimal objectives of voltage stability and power-angle stability, and the linear optimal excitation control (LOEC) is adopted with the adaptive amplitude limiter (AAL) determined by fuzzy rules. The MATLAB/Simulink platform is established and the results verify the superiority of the proposed LOEC + AAL control strategy in large disturbance working conditions, which showed better robustness. The proposed coordinated control strategy provides an effective solution for industrial application and performance improvement of FES.

Funder

the Science and Technology Project of State Grid Zhejiang Electric Power Co.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3