Author:
Kang Qi,Gu Jiapeng,Qi Xueyu,Wu Ting,Wang Shengjie,Chen Sihang,Wang Wei,Gong Jing
Abstract
In the petrochemical industry, multiphase flow, including oil–water two-phase stratified laminar flow, is more common and can be easily obtained through mathematical analysis. However, there is limited mathematical analytical model for the simulation of oil–water flow under turbulent flow. This paper introduces a two-dimensional (2D) numerical simulation method to investigate the pressure gradient, flow field, and oil–water interface height of a pipeline cross-section of horizontal tube in an oil–water stratified smooth flow. Three Reynolds average N–S equation models (k−ε, k−ω, SST k−ω) are involved to simulate oil–water stratified smooth flow according to the finite volume method. The pressure gradient and oil–water interface height can be computed according to the given volume flow rate using the iteration method. The predicted result of oil–water interface height and velocity profile by the model fit well with several published experimental data, except that there is a large error in pressure gradient. The SST k−ω turbulence model appears higher accuracy for simulating oil–water two-phase stratified flow in a horizontal pipe.
Funder
National Natural Science Foundation of China
Beijing Municipal Natural Science Foundation
National Key Research and Development Plan of China
Science Foundation of China University of Petroleum, Beijing
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献