Optimal Wireless Power Transfer Circuit without a Capacitor on the Secondary Side

Author:

Akbar Sabriansyah Rizqika1ORCID,Setiawan Eko1ORCID,Hirata Takuya2,Hodaka Ichijo3

Affiliation:

1. Informatics Engineering Department, Faculty of Computer Science, University of Brawijaya, Malang 65145, Indonesia

2. Department of Electronic Mechanical Engineering, National Institute of Technology, Oshima College, Yamaguchi 742-2193, Japan

3. Department of Environmental Robotics, Faculty of Engineering, University of Miyazaki, Miyazaki City 889-1692, Japan

Abstract

This study proposes an approach to obtain maximum power via wireless power transfer using a single primary-side capacitor. It is shown that higher power is achieved when compared to the common wireless power transfer circuit under resonance with dual (primary- and secondary-side) capacitors. This approach is divided into three phases. By choosing the capacitor and frequency as freely assignable variables, we symbolically obtain a formula that allows us to determine the optimized capacitance and frequency for maximum power. To verify our method, we used a numerical analysis and compared it with an electronic circuit simulation. The symbolic formula is able to maintain maximum power despite changes in load or in the coupling coefficients.

Funder

the Faculty of Computer Science, University of Brawijaya

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3