A Multilane Tracking Algorithm Using IPDA with Intensity Feature

Author:

Akbari Behzad,Thiyagalingam JeyanORCID,Lee Richard,Thia Kirubarajan

Abstract

Detection of multiple lane markings on road surfaces is an important aspect of autonomous vehicles. Although a number of approaches have been proposed to detect lanes, detecting multiple lane markings, particularly across a large number of frames and under varying lighting conditions, in a consistent manner is still a challenging problem. In this paper, we propose a novel approach for detecting multiple lanes across a large number of frames and under various lighting conditions. Instead of resorting to the conventional approach of processing each frame to detect lanes, we treat the overall problem as a multitarget tracking problem across space and time using the integrated probabilistic data association filter (IPDAF) as our basis filter. We use the intensity of the pixels as an augmented feature to correctly group multiple lane markings using the Hough transform. By representing these extracted lane markings as splines, we then identify a set of control points, which becomes a set of targets to be tracked over a period of time, and thus across a large number of frames. We evaluate our approach on two different fronts, covering both model- and machine-learning-based approaches, using two different datasets, namely the Caltech and TuSimple lane detection datasets, respectively. When tested against model-based approach, the proposed approach can offer as much as 5%, 12%, and 3% improvements on the true positive, false positive, and false positives per frame rates compared to the best alternative approach, respectively. When compared against a state-of-the-art machine learning technique, particularly against a supervised learning method, the proposed approach offers 57%, 31%, 4%, and 9× improvements on the false positive, false negative, accuracy, and frame rates. Furthemore, the proposed approach retains the explainability, or in other words, the cause of actions of the proposed approach can easily be understood or explained.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3