State Observer for Linear Systems with Explicit Constraints: Orthogonal Decomposition Method

Author:

Savin SergeiORCID,Balakhnov Oleg,Khusainov Ramil,Klimchik AlexandrORCID

Abstract

In this paper, an orthogonal decomposition-based state observer for systems with explicit constraints is proposed. State observers have been an integral part of robotic systems, reflecting the practicality and effectiveness of the dynamic state feedback control, but the same methods are lacking for the systems with explicit mechanical constraints, where observer designs have been proposed only for special cases of such systems, with relatively restrictive assumptions. This work aims to provide an observer design framework for a general case linear time-invariant system with explicit constraints, by finding lower-dimensional subspaces in the state space, where the system is observable while giving sufficient information for both feedback and feed-forward control. We show that the proposed formulation recovers minimal coordinate representation when it is sufficient for the control law generation and retains non-minimal coordinates when those are required for the feed-forward control law. The proposed observer is tested on a flywheel inverted pendulum and on a quadruped robot Unitree A1.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Hierarchical Sliding Mode Control Based on Extended State Observer for Underactuated Robotic System;International Journal of Control, Automation and Systems;2024-02-07

2. Studying the impact of the optimal control problem components on its frequency for a quadruple walking robot;Proceedings of Higher Educational Institutions. Маchine Building;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3