Factor Graph-Assisted Distributed Cooperative Positioning Algorithm in the GNSS System

Author:

Tang Chengkai,Zhang Lingling,Zhang Yi,Song Houbing

Abstract

The development of smart cities calls for improved accuracy in navigation and positioning services; due to the effects of satellite orbit error, ionospheric error, poor quality of navigation signals and so on, it is difficult for existing navigation technology to achieve further improvements in positioning accuracy. Distributed cooperative positioning technology can further improve the accuracy of navigation and positioning with existing GNSS (Global Navigation Satellite System) systems. However, the measured range error and the positioning error of the cooperative nodes exhibit larger reductions in positioning accuracy. In response to this question, this paper proposed a factor graph-aided distributed cooperative positioning algorithm. It establishes the confidence function of factor graphs theory with the ranging error and the positioning error of the coordinated nodes and then fuses the positioning information of the coordinated nodes by the confidence function. It can avoid the influence of positioning error and ranging error and improve the positioning accuracy of cooperative nodes. In the simulation part, the proposed algorithm is compared with a mainly coordinated positioning algorithm from four aspects: the measured range error, positioning error, convergence speed, and mutation error. The simulation results show that the proposed algorithm leads to a 30–60% improvement in positioning accuracy compared with other algorithms under the same measured range error and positioning error. The convergence rate and mutation error elimination times are only 1 / 5 to 1 / 3 of the other algorithms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3