Three-Dimensional Numerical Study of the Effect of Protective Barrier on the Dispersion of the Contaminant in a Building

Author:

Maatki Chemseddine

Abstract

The finite volume method and potential-vorticity vector formalism in their three-dimensional form were used to numerically study the impact of an adiabatic and impermeable vertical barrier on the dispersion of a local aero-contaminant due to the double-diffusive Rayleigh–Benard convection inside a cubic container. Different governing parameters such as the Rayleigh number, buoyancy ratio and barrier height were analyzed for Le = 1.2 and Pr = 0.7, representing an air-contaminant mixture. The potential-vector-vorticity formalism in the three-dimensional form allowed the elimination of the pressure terms appearing in the Navier–Stokes equations. It was found that the heat and mass transfer as well as the effectiveness of the barrier in reducing contaminant dispersion are strongly influenced by the buoyancy ratio, the barrier size and the Rayleigh number. In addition, the barrier effectiveness is more than 70% for a height of half the building height.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3