Development and Application of a Multi-Objective Tool for Thermal Design of Heat Exchangers Using Neural Networks

Author:

de Andrés Honrubia José Luis,de la Puerta José Gaviria,Cortés FernandoORCID,Aguirre-Larracoechea Urko,Goti AitorORCID,Retolaza Jone

Abstract

This paper presents the design of a multi-objective tool for sizing shell and tube heat exchangers (STHX), developed under a University/Industry collaboration. This work aims to show the feasibility of implementing artificial intelligence tools during the design of Heat Exchangers in industry. The design of STHX optimisation tools using artificial intelligence algorithms is a visited topic in the literature, nevertheless, the degree of implementation of this concept is uncommon in industrial companies. Thus, the challenge of this research consists of the development of a tool for the design of STHX using artificial intelligence algorithms that can be used by industrial companies. The approach is implemented using a simulated dataset contrasted with ARA TT, the company taking part in the project. The given dataset to develop a theoretical STHX calculator was modeled using MATLAB. This dataset was used to train seven neural networks (NNs). Three of them were mono-objective, one per objective to predict, and four were multi-objective. The last multi-objective NN was used to develop an inverse neural network (INN), which is used to find the optimal configuration of the STHXs. In this specific case, three design parameters, the pressure drop on the shell side, the pressure drop on the tube side and heat transfer rate, were jointly and successfully optimised. As a conclusion, this work proves that the developed tool is valid in both terms of effectiveness and user-friendliness for companies like ARA TT to improve their business activity.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3