One-Stage Methods of Computer Vision Object Detection to Classify Carious Lesions from Smartphone Imaging

Author:

Salahin S. M. Siamus1,Ullaa M. D. Shefat1ORCID,Ahmed Saif1,Mohammed Nabeel1ORCID,Farook Taseef Hasan2ORCID,Dudley James2ORCID

Affiliation:

1. Electrical and Computer Engineering, North South University, Dhaka 1229, Bangladesh

2. Adelaide Dental School, The University of Adelaide, Adelaide 5005, Australia

Abstract

The current study aimed to implement and validate an automation system to detect carious lesions from smartphone images using different one-stage deep learning techniques. 233 images of carious lesions were captured using a smartphone camera system at 1432 × 1375 pixels, then classified and screened according to a visual caries classification index. Following data augmentation, the YOLO v5 model for object detection was used. After training the model with 1452 images at 640 × 588 pixel resolution, which included the ones that were created via image augmentation, a discrimination experiment was performed. Diagnostic indicators such as true positive, true negative, false positive, false negative, and mean average precision were used to analyze object detection performance and segmentation of systems. YOLO v5X and YOLO v5M models achieved superior performance over the other models on the same dataset. YOLO v5X’s mAP was 0.727, precision was 0.731, and recall was 0.729, which was higher than other models of YOLO v5, which generated 64% accuracy, with YOLO v5M producing slightly inferior results. Overall mAPs of 0.70, precision of 0.712, and recall of 0.708 were achieved. Object detection through the current YOLO models was able to successfully extract and classify regions of carious lesions from smartphone photographs of in vitro tooth specimens with reasonable accuracy. YOLO v5M was better fit to detect carious microcavitations while YOLO v5X was able to detect carious changes without cavitation. No single model was capable of adequately diagnosing all classifications of carious lesions.

Publisher

MDPI AG

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3