Deep Green Diagnostics: Urban Green Space Analysis Using Deep Learning and Drone Images

Author:

Moreno-Armendáriz MarcoORCID,Calvo HiramORCID,Duchanoy CarlosORCID,López-Juárez AnayantzinORCID,Vargas-Monroy IsraelORCID,Suarez-Castañon MiguelORCID

Abstract

Nowadays, more than half of the world’s population lives in urban areas, and this number continues increasing. Consequently, there are more and more scientific publications that analyze health problems of people associated with living in these highly urbanized locations. In particular, some of the recent work has focused on relating people’s health to the quality and quantity of urban green areas. In this context, and considering the huge amount of land area in large cities that must be supervised, our work seeks to develop a deep learning-based solution capable of determining the level of health of the land and to assess whether it is contaminated. The main purpose is to provide health institutions with software capable of creating updated maps that indicate where these phenomena are presented, as this information could be very useful to guide public health goals in large cities. Our software is released as open source code, and the data used for the experiments presented in this paper are also freely available.

Funder

Instituto Politécnico Nacional

Consejo Nacional de Ciencia y Tecnología

Cátedras Conacyt

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3