Rasch Model of the COVID-19 Symptom Checklist—A Psychometric Validation Study

Author:

Stamm Tanja A.ORCID,Ritschl ValentinORCID,Omara MaisaORCID,Andrews Margaret R.,Mevenkamp NilsORCID,Rzepka Angelika,Schirmer MichaelORCID,Walch Siegfried,Salzberger Thomas,Mosor Erika

Abstract

While self-reported Coronavirus Disease 2019 (COVID-19) symptom checklists have been extensively used during the pandemic, they have not been sufficiently validated from a psychometric perspective. We, therefore, used advanced psychometric modelling to explore the construct validity and internal consistency of an online self-reported COVID-19 symptom checklist and suggested adaptations where necessary. Fit to the Rasch model was examined in a sample of 1638 Austrian citizens who completed the checklist on up to 20 days during a lockdown. The items’ fatigue’, ‘headache’ and ‘sneezing’ had the highest likelihood to be affirmed. The longitudinal application of the symptom checklist increased the fit to the Rasch model. The item ‘cough’ showed a significant misfit to the fundamental measurement model and an additional dependency to ‘dry cough/no sputum production’. Several personal factors, such as gender, age group, educational status, COVID-19 test status, comorbidities, immunosuppressive medication, pregnancy and pollen allergy led to systematic differences in the patterns of how symptoms were affirmed. Raw scores’ adjustments ranged from ±0.01 to ±0.25 on the metric scales (0 to 10). Except for some basic adaptations that increases the scale’s construct validity and internal consistency, the present analysis supports the combination of items. More accurate item wordings co-created with laypersons would lead to a common understanding of what is meant by a specific symptom. Adjustments for personal factors and comorbidities would allow for better clinical interpretations of self-reported symptom data.

Funder

Vienna Science and Technology Fund

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Reference27 articles.

1. A Novel Coronavirus from Patients with Pneumonia in China, 2019

2. Clinical Management of Severe Acute Respiratory Infection When Novel Coronavirus (2019-nCoV) Infection is Suspected—Interim Guidancehttps://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspected

3. Real-time tracking of self-reported symptoms to predict potential COVID-19

4. Geographical tracking and mapping of coronavirus disease COVID-19/severe acute res-piratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: How 21st century GIS technologies are supporting the global fight against outbreaks and epidemics;Boulos;Int. J. Health Geogr.,2020

5. Symptom Monitoring With Patient-Reported Outcomes During Routine Cancer Treatment: A Randomized Controlled Trial

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3