Application of Random Forest and SHAP Tree Explainer in Exploring Spatial (In)Justice to Aid Urban Planning

Author:

Deb DebzaniORCID,Smith Russell M.ORCID

Abstract

In light of recent local, national, and global events, spatial justice provides a potentially powerful lens by which to explore a multitude of spatial inequalities. For more than two decades, scholars have been espousing the power of this concept to help develop more equitable and just communities. However, defining spatial justice and developing a methodology for quantitatively analyzing it is complicated and no agreed upon metric for examining spatial justice has been developed. Instead, individual measures of spatial injustices have been studied. One such individual measure is economic mobility. Recent research on economic mobility has revealed the importance of local geography on upward mobility and may serve as an important keystone in developing a metric for multiple place-based issues of spatial inequality. This paper seeks to explore place-based variables within individual census tracts in an effort to understand their impact on economic mobility and potentially spatial justice. The methodology relies on machine learning techniques and the results show that the best performing model is able to predict economic mobility of a census tract based on its spatial variables with 86% accuracy. The availability and density of jobs, compactness of the area, and the presence of medical facilities and underground storage tanks have the greatest influence, whereas some of the influential features are positively while the others are negatively associated. In the end, this research will allow for comparative analysis between differing geographies and also identify leading variables in the overall quest for spatial justice.

Funder

National Science Foundation

Research Opportunities Initiative, University of North Carolina

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3