miRNA Expression Profiling in Human Breast Cancer Diagnostics and Therapy

Author:

Dziechciowska Iga1,Dąbrowska Małgorzata1,Mizielska Anna1,Pyra Natalia1,Lisiak Natalia1,Kopczyński Przemysław2,Jankowska-Wajda Magdalena3ORCID,Rubiś Błażej1ORCID

Affiliation:

1. Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland

2. Centre for Orthodontic Mini-Implants, Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, Bukowska 70 Str., 60-812 Poznan, Poland

3. Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8 Str., 61-614 Poznan, Poland

Abstract

Breast cancer is one of the most commonly diagnosed cancer types worldwide. Regarding molecular characteristics and classification, it is a heterogeneous disease, which makes it more challenging to diagnose. As is commonly known, early detection plays a pivotal role in decreasing mortality and providing a better prognosis for all patients. Different treatment strategies can be adjusted based on tumor progression and molecular characteristics, including personalized therapies. However, dealing with resistance to drugs and recurrence is a challenge. The therapeutic options are limited and can still lead to poor clinical outcomes. This review aims to shed light on the current perspective on the role of miRNAs in breast cancer diagnostics, characteristics, and prognosis. We discuss the potential role of selected non-coding RNAs most commonly associated with breast cancer. These include miR-21, miR-106a, miR-155, miR-141, let-7c, miR-335, miR-126, miR-199a, miR-101, and miR-9, which are perceived as potential biomarkers in breast cancer prognosis, diagnostics, and treatment response monitoring. As miRNAs differ in expression levels in different types of cancer, they may provide novel cancer therapy strategies. However, some limitations regarding dynamic alterations, tissue-specific profiles, and detection methods must also be raised.

Funder

Minister of Science and Higher Education

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3