Diagenesis and Pore Formation Evolution of Continental Shale in the Da’anzhai Lower Jurassic Section in the Sichuan Basin

Author:

Fu Qiang123,Hu Zongquan12,Qin Tingting3,Feng Dongjun12,Yang Bing3,Zhu Zhiwei3,Xing Lele3

Affiliation:

1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China

2. Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology, Beijing 100083, China

3. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

Abstract

As an unconventional oil and gas reservoir, the diagenesis and evolution of continental shale controls the formation and occurrence of inorganic and organic pores. In order to quantitatively characterize the pore characteristics of a continental shale reservoir and their influence on the evolution of the diagenesis stage, the characteristics of organic and inorganic pore types of continental shale in the Da’anzhai section of the lower Jurassic Ziliujing Formation were identified by means of X-ray diffraction mineral composition analysis and argon ion polishing scanning electron microscope measurements and observations, and the influence control of the diagenesis stage on the pore development of the continental shale reservoir and its control were clarified. The results show the following: ① The organic matter pores in continental shale are developed in large quantities, including organic matter pores in the mineral asphalt matrix and organic matter pores in the kerogen; the pore types of inorganic minerals are very rich, the main pore types are linear pores between clay minerals, intergranular (intergranular) pores, and intragranular corrosion pores, and microcracks are also developed. ② When affected by compaction diagenesis, the inorganic pores of continental shale decrease with an increase in the burial depth and diagenesis degree. ③ The burial depth of continental shale is 2000–3000 m in the middle of diagenetic stage A, and a large number of organic matter pores and dissolved inorganic pores develop at this depth, meaning that the total porosity of shale increases significantly. The burial depth of continental shale is 3000–4000 m at diagenetic stage B, where kaolinite and other clay minerals are dehydrated and converted into illite, the brittleness of shale is increased, and the interior of the shale is subject to external stress, causing microcracks to form. In the late diagenetic stage, when the buried depth of the continental shale is more than 4000 m, the organic matter is subject to secondary cracking and hydrocarbon generation, the organic pores of shale increase in number again, and the inorganic pores decrease in number due to compaction. In conclusion, we found that the burial depth is the main control factor for the development of pores and microfractures in continental shale reservoirs; diagenesis caused by burial depth is the main factor affecting the development of pores and microfractures in continental shale reservoirs; and the shale burial depth in this case is more than 3500 m, which is in the middle of diagenetic stage B. Inorganic porosity in shale is reduced, and the number of microfractures is increased. When the shale is buried more than 4000 m deep in the late diagenetic stage, the thermal evolution of organic matter in shale is high, and methane gas is generated in large quantities, which is conducive to the formation and development of organic matter pores in continental shale.

Funder

Sinopec Key Laboratory of Shale Oil/Gas Exploration and Production Technology

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference33 articles.

1. Nanoporosity Characteristics of Some Natural Clay Minerals and Soils;Aringhieri;Clays Clay Miner.,2004

2. Formation, preservation and connectivity control of organic pores in shale;Borjigin;Pet. Explor. Dev.,2021

3. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion;Clarkson;Fuel,2013

4. Geological evaluation of Halfway-Doig-Montney hybrid gas shale-tight gas reservoir, northeastern British Columbia;Chalmers;Mar. Pet. Geol.,2012

5. Curtis, M.E., Ambrose, R.J., Sondergeld, C.H., and Rai, C.S. (2010, January 19–21). Structural characterization of gas shales on the micro- and nano-scales. Proceedings of the Canadian Unconventional Resources and International Petroleum Conference, Calgary, AB, Canada. SPE 137693-15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3