Insight into the Potential Antioxidant and Antidiabetic Activities of Scrolled Kaolinite Single Sheet (KNs) and Its Composite with ZnO Nanoparticles: Synergetic Studies

Author:

Rudayni Hassan Ahmed1ORCID,Aladwani Malak1,Alneghery Lina M.1,Allam Ahmed A.2,Abukhadra Mostafa R.34ORCID,Bellucci Stefano5ORCID

Affiliation:

1. Department of Biology, College of Science, Imam Muhammad bin Saud Islamic University, Riyadh 11623, Saudi Arabia

2. Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65214, Egypt

3. Materials Technologies and Their Applications Lab, Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65214, Egypt

4. Geology Department, Faculty of Science, Beni-Suef University, Beni-Suef 65214, Egypt

5. INFN, Laboratori Nazionali Di Frascati, E. Fermi 54, 00044 Frascati, Italy

Abstract

The kaolinite sheets were scrolled by sonication-induced chemical delamination processes into well-developed nanotubes (KNs) which were used as substrates for microwave-based ZnO nanoparticles (ZnO/KNs). The biological activities of synthetic ZnO/KNs structures, in terms of the antioxidant and antidiabetic properties, were assessed in comparative studies with the separated phases of the synthetic ZnO and KNs as well as the commercially used ZnO. The KNs substrate resulted in a notable enhancement in the antioxidant and antidiabetic properties of ZnO, which was assigned positive influence on the surface area, interactive interfaces, charge separation, and agglomeration properties of ZnO in addition to the detectable bioactive properties of the KNs structure. The ZnO/KNs structure achieved remarkable scavenging efficiencies for 1, 1-diphenyl-2-picrylhydrazil (DPPH) (89.8 ± 1.57%), nitric oxide (90.6 ± 1.63%), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) (86.8 ± 1.28%), and superoxide (43.9 ± 1.72%) radicals. Additionally, it shows high inhibition effects on porcine α-amylase (84.3 ± 1.92%), crude α-amylase (70.6 ± 1.37%), pancreatic α-Glucosidase (94.7 ± 1.54%), crude α-Glucosidase (95.4 ± 1.64%), and amyloglucosidase (95.3 ± 1.32%) enzymes. This antidiabetic activity is significantly higher than the activity of miglitol and close to or slightly higher than acarbose, which leads us to recommend the use of ZnO/KNs when considering the cost and side effects of the commercially used drugs.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3