In Situ Mineralogical Constraints on Magmatic Process for Porphyry Deposits in the Upper Crust: A Case from Tongchang–Chang’anchong Porphyry Deposits, SW China

Author:

Wang Zixuan1,Zheng Yuanchuan2,Xu Bo123,Shen Yang4,Wang Lu2

Affiliation:

1. School of Gemology, China University of Geosciences Beijing, Beijing 100083, China

2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China

3. The Beijing SHRIMP Center, Chinese Academy of Geological Sciences, Beijing 100037, China

4. State Key Laboratory of Marine Geology, and School of Ocean and Earth Science, Tongji University, Shanghai 200092, China

Abstract

The magmatic process within upper crust encompasses various contents such as the transition between magmatic and hydrothermal systems and changes in oxygen fugacity (ƒO2), which ultimately play key roles in the formation of porphyry Cu deposits (PCDs). However, tracing these magmatic processes, especially in porphyry systems, is not an easy task. This study reported the detailed process of magmatic fluid exsolution and systematical variation of magmatic ƒO2 within the upper crust of a Tongchang–Chang’anchong porphyry Cu deposit, based on detailed investigations of mineral crystallization sequences and compositional features of the minerals in the fertile porphyries. Results indicate that the fertile porphyries show a high initial ƒO2, with ΔFMQ ≥ +3.0 (ΔFMQ is the deviation of logƒO2 from the fayalite–magnetite–quartz (FMQ) buffer). The magmatic ƒO2 (ΔFMQ) continued to decrease to ~+2 until fluid exsolution occurred at ~790 °C due to wall-rock contamination. The magmatic fluid exsolution process caused a temporary increase in the ƒO2 (to ΔFMQ = ~+3.4). The high magmatic ƒO2 during this process (790–750 °C) resulted in a higher content of ore-forming materials in the exsolved magmatic fluid. When the temperature dropped below 750 °C, the magmatic ƒO2 began to continuously decrease and eventually reached ΔFMQ = ~+0.6. The lower magmatic ƒO2 hindered the further migration of ore-forming materials through the exsolved fluid during this process (< 750 °C). Results of this study indicate that the initial magma during the upper crustal magmatic process of PCDs generally has a high ƒO2, and the contamination of reduced components can significantly decrease the magmatic ƒO2. The early magmatic fluid exsolution process can maintain a high magmatic ƒO2 condition, thereby efficiently extracting ore-forming minerals and producing ore-forming fluids, which is the key to the formation of PCDs. The latter continuous decrease in magmatic ƒO2 during the fluid exsolution process may be the reason preventing the Tongchang–Chang’anchong porphyry Cu deposit to form a giant PCD.

Funder

National Key Technologies R&D Program

National Natural Science Foundation of China

Young Talent Support Project of CAST, the Fundamental Research Funds for the Central Universities

China Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3