Timing of Transition from Proto- to Paleo-Tethys: Evidence from the Early Devonian Bimodal Volcanics in the North Qaidam Tectonic Belt, Northern Tibetan Plateau

Author:

Wang Mao1,Pei Xianzhi12,Li Ruibao12,Pei Lei12,Li Zuochen12ORCID,Liu Chengjun12,Xu Lili12,Lin Hao1

Affiliation:

1. Key Laboratory of Western China’s Mineral Resources and Geological Engineering, Ministry of Education, School of Earth Science and Resources, Chang’an University, Xi’an 710054, China

2. Key Laboratory for Mineralization and Efficient Utilization of Critical Metals, Xi’an 710054, China

Abstract

The transition from the Proto- to the Paleo-Tethys is still a controversial issue. This study reports a new petrology, zircon U–Pb geochronology, and whole-rock geochemistry of volcanic rocks from the Maoniushan Formation in the Nankeke area, northern Qaidam (NQ) of the Tibetan Plateau, to provide new evidence for the transition from the Proto- to the Paleo-Tethys oceans. The volcanic suite consists mainly of rhyolitic crystal lithic tuff lavas and minor basalts. Zircon U–Pb data indicate that the bimodal volcanic rocks were formed during the Early Devonian (ca. 410–409 Ma). Geochemically, the basalts have low contents of SiO2 (48.92 wt.%–51.19 wt.%) and relatively high contents of MgO (8.94 wt.%–9.99 wt.%), TiO2 (1.05 wt.%–1.29 wt.%), K2O (2.35 wt.%–4.17 wt.%), and K2O/Na2O ratios (1.04–2.56), showing the characteristics of calc-alkaline basalts. Their rare earth element (REE) patterns and trace element spider diagrams are characterized by enrichments in LREEs (LREE/HREE = 18.31–21.34) and large ion lithophile elements (LILEs; Rb, Th, and K) and depletion in high-field-strength elements (HFSEs; Nb, Ta, P, and Ti), with slight negative Eu anomalies (Eu/Eu* = 0.82–0.86), which are similar to Etendeka continental flood basalts (CFB). These features suggest that the basalts were most likely derived from low degree (1%–5%) partial melting of the asthenospheric mantle, contaminated by small volumes of continental crust. In contrast, the felsic volcanics have high SiO2 (68.41 wt.%–77.12 wt.%), variable Al2O3 (9.56 wt.%–12.62 wt.%), low MgO, and A/CNK ratios mostly between 1.08 and 1.15, defining their peraluminous and medium-K calc-alkaline signatures. Their trace element signatures show enrichments of LREEs and LILEs (e.g., Rb, Th, U, K, and Pb), depletion of HFSEs (e.g., Nb, Ti, Ta, and P), and negative Eu anomalies (Eu/Eu* = 0.22–0.66). These features suggest that the felsic volcanics were derived from partial melting of the middle crust, without interaction with mantle melts. Considering all the previous data and geochemical features, the Maoniushan Formation volcanic rocks in NQ formed in a post-collisional extensional setting associated with asthenospheric mantle upwelling and delamination in the Early Devonian. Together with the regional data, this study proposed that the Proto-Tethys Ocean had closed and evolved to the continental subduction/collision orogeny stage during the Middle to Late Ordovician, evolved to the post-collisional extensional stage in the Early Devonian, and finally formed the Zongwulong Ocean (branches of the Paleo-Tethys Ocean) in the Late Carboniferous, forming the tectonic framework of the Paleo-Tethys Archipelagic Ocean in the northern margin of the Tibetan Plateau.

Funder

National Natural Science Foundation of China

National Science Foundation of Shaanxi Provence of China

China Scholarship Council

Fundamental Research Funds for the Central Universities

Youth Innovation Team of Shaanxi Universities

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference171 articles.

1. Geological Events and Tectonic Evolution of the North Margin of the Qaidam Basin;Xin;Geol. Surv. Surv. Surv. Res.,2006

2. Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system;Zhang;Acta Petrol. Sin.,2015

3. Ren, Y.F. (2017). Mesoproterozoic to Early Paleozoic Tectonic Evolution of the North Qaidam Orogenic Belt. [Ph.D. Thesis, Northwest University].

4. Sun, G.C. (2020). Reworking and Recycling of the Subucted Crustal Materials: Geochemical Evidence from Paleozoic Magmatic Rocks in the North Qaidam Orogen. [Ph.D. Thesis, University of Science and Technology of China].

5. Zhu, X.H. (2021). Magmatic Response to the Early Paleozoic Tectonic Transition in the South Qilian and North Qaidam and its Constraints on Orogenic Process. [Ph.D. Thesis, Northwest University].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3