Insights into the Crustal Evolution and Tungsten Mineralization of the West Cathaysia Block: Constraints from the Inherited Zircons from the Mesozoic Dengfuxian and Paleozoic Tanghu Plutons, South China

Author:

Cao Jingya123ORCID,Lu Youyue1,Liu Lei4,Fu Jianming1,Xu Guofeng4,Wu Qianhong4,Yang Shengxiong2,Qiu Xiaofei1,Zhang Zunzun1

Affiliation:

1. Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China

2. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China

3. Department of Ocean Science, The Hong Kong University of Science & Technology, Hong Kong, China

4. Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Central South University, Changsha 410083, China

Abstract

The formation and evolution of the ancient continental crust are crucial issues in solid-earth geology which are commonly associated with global tectonic events and the formation of economically valuable magmatic-hydrothermal ore deposits. The Cathaysia Block, one of the ancient continents in Southeast Asia, can be subdivided into two parts: the West Cathaysia Block and the East Cathaysia Block. Unlike the East Cathaysia Block, no Precambrian rocks are exposed in the West Cathaysia Block, constraining further understanding of the formation and evolution of this block. In this study, a total of four hundred and thirty-three zircon U-Pb dating analyses and two hundred and eighteen Lu-Hf isotopic analyses on zircon grains from the Jurassic Dengfuxian granites and Ordovician Tanghu granites, Nanling Range, were carried out. LA-ICP-MS zircon U-Pb dating yields mean average 206Pb/238U ages of 152.6 ± 2.2 Ma (MSWD = 1.6) and 442.4 ± 1.7 Ma (MSWD = 3.8), which are regarded as the rock-forming age for the Jurassic Dengfuxian granites and Ordovician Tanghu granites, respectively. The 207Pb/206Pb ages of the inherited zircons from the Jurassic Dengfuxian granites and Ordovician Tanghu granites range from 522 Ma to 3395 Ma, hosting two major peaks at the 0.9–1.0 Ga and 2.4–2.5 Ga. In contrast to the East Cathaysia Block, the West Cathaysia Block lacks the age peak of 1.8–1.9 Ga, indicating that the West Cathaysia Block was not influenced by the assembly of the Columbia supercontinent in the Paleo-Proterozoic. In combination with the Lu-Hf isotopes, we proposed that the crust evolution of the West Cathaysia Block in Archean is dominated by juvenile crustal growth events, and dominated by the crustal reworking since the Proterozoic. The long duration of crustal reworking in the West Cathaysia Block resulted in the enrichment of lithophile elements (e.g., W, Sn, Nb, and Ta) in the crust of that region. Therefore, the Jurassic granites in the Nanling Range, which are mainly derived from the partial melting of Proterozoic basement rocks, became associated with large-scale tungsten polymetallic mineralization.

Funder

Open Fund of the Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey

China Postdoctoral Science Foundation

PI Pro-ject of Southern Marine Science and Engineering Guangdong Laboratory

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3