Tectono-Magmatic Significance of the Lower Devonian Mafic Intrusions in the East Kunlun Orogenic Belt: Keys for the Evolution of Proto-Tethys

Author:

Meng Yong1,Zhang Xin1,Li Zuochen2ORCID,Han Yuan1,Zhao Haibo1,Yang Yang1,Xu Xingchen1

Affiliation:

1. Xining Center of Natural Resource Comprehensive Survey, CGS, Xining 810021, China

2. School of Earth Science and Resources, Chang’an University, Xi’an 710054, China

Abstract

Studies on post-collisional magmatic rocks can provide key clues to researching the crust–mantle interactions and the tectonic evolution of collisional orogenic belts. This study investigated a suite of newly discovered mafic intrusions in the middle of the East Kunlun orogenic belt through integrated analysis of petrology, petrography, and zircon U–Pb dating. The data could offer new insights into the generation of the Proto-Tethyan tectonic evolution. The result shows that these mafic intrusions are mainly gabbro and diabase, formed in the Early Devonian, with zircon U–Pb ages of 408.9 ± 2.0 Ma for gabbro and 411.1 ± 3.1 Ma for diabase. It consists of plagioclase, pyroxene, and dark minerals, and a small number of calcite and chlorite. Diabase has a small amount of amygdale. Their Na2O + K2O contents range from 3.47 wt.% to 5.45 wt.%, with Na2O/K2O ratios from 1.39 to 3.09, suggesting that they are calc–alkaline rocks. These rocks have an Fe2O3ᵀ content of 7.68 wt.%–11.59 wt.% and Mg# of 50.58–59.48, belonging to the iron-rich and magnesium-poor type. The chondrite-normalized rare earth elements show similar patterns that are characterized by enrichment of light rare earth elements, with (La/Yb)N of 3.27–6.75 and no significant europium anomaly, indicating the rocks are homogenous. The studied rocks are characterized by low contents of compatible elements Cr and Ni, enrichment of large-ion lithophile elements such as Rb, U, Sr, and Nd, and high-field-strength elements such as Nb, Ta, Zr, Hf, and Th. The mafic magma originated from the partial melting of the enriched mantle and was assimilated and mixed with crust materials during the process of migration. Based on the regional tectonic evolution, we interpret that the Proto-Tethys Ocean had closed in the Early Devonian, and that the East Kunlun region was in a post-collisional extensional tectonic setting.

Funder

National Natural Sciences Foundation of China

China Geological Survey

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3