Study of Structural Transformation and Chemical Reactivity of Kaolinite-Based High Ash Slime during Calcination

Author:

Xue Hongfei1ORCID,Dong Xianshu1ORCID,Fan Yuping1,Ma Xiaomin1,Yao Suling1

Affiliation:

1. College of Mineral Processing Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan 030024, China

Abstract

The transformation of kaolinite into metakaolinite by thermal activation to obtain highly active aluminosilicate is commonly known. In addition to kaolin, the high content of kaolinite in coal mining waste is another potential source for obtaining an aluminosilicate precursor, thereby protecting the environment and adding value to industrial wastes. In this paper, the kaolinite-based high ash slime (KAS) was calcined at temperatures ranging from 400 °C to 1000 °C under air, N2, and CO2 atmospheres, respectively. The thermal behaviors and structural evolution of each component in KAS were analyzed by thermal analysis (TG-DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Moreover, the chemical reactivity of Al2O3 and SiO2 in calcined KAS was evaluated by HCl and NaOH leaching methods. The results show that the applied KAS in this study primarily consisted of kaolinite and carbon, while the minor mineral phases included quartz, calcite, and pyrite. Additionally, the structural transformation of kaolinite during calcination included dehydroxylation, sintering, and the formation of mullite. Crystalline kaolinite completely decomposed into semicrystalline metakaolinite at 600–800 °C, accounting for the increase in chemical reactivity. The interlayer sintering of metakaolinite and the recrystallization of amorphous components led to the decrease in chemical reactivity after 800 °C. Furthermore, the thermal behaviors of carbon in KAS are greatly affected by the calcination atmosphere. The presence of carbon reduced the chemical reactivity of calcined KAS.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Applied Basic Research Project in Shanxi Province

Graduate Education Innovation Project in Shanxi Province

Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3