Affiliation:
1. Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, Peking University, Beijing 100871, China
2. Key Laboratory of Western China’s Mineral Resources and Geological Engineering, Ministry of Education, School of Earth Science and Resources, Chang’an University, Xi’an 710054, China
3. Xinjiang Mineral Resources Research Center, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
4. Western Region Gold Co., Ltd., Urumqi 830002, China
5. Key Laboratory of Gold Mineralization Processes and Resource Utilization, MNR, Shandong Institute of Geological Sciences, Jinan 250013, China
Abstract
The process and mechanism of gold mineralization are frontier issues. The Dunbasitao deposit is the most important gold deposit discovered along the Armantai suture zone, East Junggar, NW China, which indicates the potential for future ore exploration in this area. Orebodies are mainly hosted in Lower Carboniferous Jiangbasitao Formation volcano-sedimentary rocks, and the ores are characterized by multistage pyrites. Based on microscopy and backscattered electron imaging studies, pyrites are classified into five types: the pre-ore framboidal/colloidal Py0; the early-stage coarse-grained, cubic, and homogeneous Py1; and the middle-stage fine-grained, cubic/pyritohedron Py2 that includes Py2a (core), Py2b (mantle), and Py2c (rim). The results of the EPMA and in situ LA-ICP-MS analyses show that trace elements of pyrite mainly occur in two forms: solid solutions and invisible or visible inclusions. Mn, Co, Ni, and As enter the pyrite lattice, whereas Ti occurs as mineral inclusions, and Au, Cu, Zn, Sb, and Pb can occur in both forms. Au and As show a positive linear relationship with r = 0.850. Py2b has much higher Au contents (20.1 to 201 ppm) than other pyrite types (Py0: 0.01 to 0.36 ppm; Py1: 0.01 to 0.02 ppm; Py2a: 0.31 to 2.48 ppm; and Py2c: 0.18 to 18.0 ppm). The Dunbasitao deposit is classified as an orogenic gold deposit using the two latest machine learning classifiers based on pyrite trace element data. Fluid immiscibility, sudden cooling, and the substitution of S1− with As1− might be crucial mechanisms leading to Au precipitation. Initial ore-forming fluids brought major amounts of As, Au, Co, Ni, Se, Zn, Ag, Cd, Sn, and other elements, and the Jiangbasitao Formation host rocks contributed a certain amount of As, Ni, Cu, Sb, Pb, and Bi, at least.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Xinjiang
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献