Attention Networks for the Quality Enhancement of Light Field Images

Author:

Schiopu IonutORCID,Munteanu AdrianORCID

Abstract

In this paper, we propose a novel filtering method based on deep attention networks for the quality enhancement of light field (LF) images captured by plenoptic cameras and compressed using the High Efficiency Video Coding (HEVC) standard. The proposed architecture was built using efficient complex processing blocks and novel attention-based residual blocks. The network takes advantage of the macro-pixel (MP) structure, specific to LF images, and processes each reconstructed MP in the luminance (Y) channel. The input patch is represented as a tensor that collects, from an MP neighbourhood, four Epipolar Plane Images (EPIs) at four different angles. The experimental results on a common LF image database showed high improvements over HEVC in terms of the structural similarity index (SSIM), with an average Y-Bjøntegaard Delta (BD)-rate savings of 36.57%, and an average Y-BD-PSNR improvement of 2.301 dB. Increased performance was achieved when the HEVC built-in filtering methods were skipped. The visual results illustrate that the enhanced image contains sharper edges and more texture details. The ablation study provides two robust solutions to reduce the inference time by 44.6% and the network complexity by 74.7%. The results demonstrate the potential of attention networks for the quality enhancement of LF images encoded by HEVC.

Funder

Innoviris

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3