A Multi-Approach Analysis for Monitoring Wave Energy Driven by Coastal Extremes

Author:

Matar Reine1ORCID,Abcha Nizar1ORCID,Abroug Iskander1ORCID,Lecoq Nicolas2ORCID,Turki Emma-Imen2

Affiliation:

1. Normandy University, UNICAEN, UNIROUEN, CNRS, UMR 6143 M2C, 14000 Caen, France

2. Normandy University, UNIROUEN, UNICAEN, CNRS, UMR 6143 M2C, 76000 Rouen, France

Abstract

This research investigates the behavior and frequency evolution of extreme waves in coastal areas through a combination of physical modeling, spectral analysis, and artificial intelligence (AI) techniques. Laboratory experiments were conducted in a wave flume, deploying various wave spectra, including JONSWAP (γ = 7), JONSWAP (γ = 3.3), and Pierson–Moskowitz, using the dispersive focusing technique, covering a broad range of wave amplitudes. Wave characteristics were monitored using fifty-one gauges at distances between 4 m and 14 m from the wave generator, employing power spectral density (PSD) analysis to investigate wave energy subtleties. A spectral approach of discrete wavelets identified frequency components. The energy of the dominant frequency components, d5 and d4, representing the peak frequency (fp = 0.75 Hz) and its first harmonic (2fp = 1.5 Hz), respectively, exhibited a significant decrease in energy, while others increased, revealing potential correlations with zones of higher energy dissipation. This study underscores the repeatable and precise nature of results, demonstrating the Multilayer Perceptron (MLP) machine learning algorithm’s accuracy in predicting the energy of frequency components. The finding emphasizes the importance of a multi-approach analysis for effectively monitoring energy in extreme coastal waves.

Publisher

MDPI AG

Reference52 articles.

1. Global ocean wave fields show consistent regional trsends between 1980 and 2014 in a multi-product ensemble;Erikson;Commun. Earth Environ.,2022

2. Sweet, W., Hamlington, B., Kopp, R.E., Weaver, C., Barnard, P.L., Bekaert, D., Brooks, W., Craghan, M., Dusek, G., and Frederikse, T. (2024, April 15). Global and Regional Sea Level Rise Scenarios for the United States. Report, Available online: https://pubs.usgs.gov/publication/70229139.

3. Estimating coastal flood damage costs to transit infrastructure under future sea level rise;Martello;Commun Earth Environ.,2023

4. How high will the seas rise?;Oppenheimer;Science,2016

5. Maximum wave crest and height statistics of irregular and abnormal waves in an offshore basin;Petrova;Appl. Ocean Res.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3