Aminated Spherical SiO2 Synthesized from Fly Ash and Its Application for Pb2+ and Cu2+ Sorption

Author:

Chen Jiahui12,Liu Nengsheng3,Wang Yunzhu2,Li Xiang2,Zhang Zheren12,Liu Le3,Dou Zhaoyang1,He Sufang12

Affiliation:

1. Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, China

3. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

Abstract

Fly ash was utilized as raw material for the preparation of spherical SiO2 (SS), which was subsequently ammonified using APTES (H2NCH2CH2CH2Si(OC2H5)3) to obtain aminated spherical SiO2 (SSN). The physicochemical properties of SS and SSN were systematically characterized. Notably, SS exhibited a remarkable specific surface area and pore volume, enabling it to accommodate abundant nitrogen-containing groups. These functional groups served as crucial active sorption sites, significantly enhancing the sorption capacity of SiO2 for Pb2+ and Cu2+ ions. Thus, the removal efficiency was above 99.9% when using dosages of 4 and 6 g/L SSN in solutions containing 200 mg/L of Pb2+ and Cu2+, respectively. Additionally, SSN showed a higher theoretical maximum sorption capacity for Pb2+ and Cu2+ ions, as determined by the Langmuir isotherm model, with values of 185.2 mg/g and 86.2 mg/g, respectively. These results surpass those reported in previous studies on adsorbents derived from fly ash. The chemical reactions that occurred between the aqueous cations and nitrogen-containing groups were identified as the pivotal factors governing the sorption of Pb2+ and Cu2+. This study presents a practical approach to fly ash utilization, along with the effective removal of Pb2+ and Cu2+ from water.

Funder

Yunnan Ten Thousand Talents Plan Young and Elite Talents Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3