Abstract
Pricing multi-asset options has always been one of the key problems in financial engineering because of their high dimensionality and the low convergence rates of pricing algorithms. This paper studies a method to accelerate Monte Carlo (MC) simulations for pricing multi-asset options with stochastic volatilities. First, a conditional Monte Carlo (CMC) pricing formula is constructed to reduce the dimension and variance of the MC simulation. Then, an efficient martingale control variate (CV), based on the martingale representation theorem, is designed by selecting volatility parameters in the approximated option price for further variance reduction. Numerical tests illustrated the sensitivity of the CMC method to correlation coefficients and the effectiveness and robustness of our martingale CV method. The idea in this paper is also applicable for the valuation of other derivatives with stochastic volatility.
Funder
National Natural Science Foundation of China
China Scholarship Council
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献