Role of Two G-Protein α Subunits in Vegetative Growth, Cell Wall Integrity, and Virulence of the Entomopathogenic Fungus Metarhizium robertsii

Author:

Tong Youmin,Wu Hao,He Lili,Qu Jiaojiao,Liu Zhenbang,Wang Yulong,Chen Mingjun,Huang Bo

Abstract

Heterotrimeric G-proteins are crucial for fungal growth and differentiation. The α subunits of heterotrimeric G-proteins play an essential role in controlling signal transduction. However, the function of G-protein α subunits in entomopathogenic fungi remains poorly understood. Two group II Gα subunits (MrGPA2 and MrGPA4) were characterized in the entomopathogenic fungus, Metarhizium robertsii. Bioinformatics analysis showed that the relationship between MrGPA2 and MrGPA4 was closer than that of other MrGPAs. Both green fluorescent protein (GFP)-tagged MrGPA2 and MrGPA4 were localized at the cytoplasm. Furthermore, ∆MrGpa2∆MrGpa4 double mutants showed remarkably reduced vegetative growth compared to the wild-type and single-mutant strains, which was accompanied by the downregulation of several growth-related genes, such as ssk2, pbs2, stuA, hog1, and ac. Only the ∆MrGpa2∆MrGpa4 double mutant was sensitive to Congo red stress. The insect bioassay demonstrated significantly attenuated virulence for the ∆MrGpa2∆MrGpa4 double mutant compared to the wild-type and single-mutant strains. Further analysis indicated that double deletion of MrGpa2 and MrGpa4 had no effect on appressorium formation but suppressed the expression levels of several virulence-related genes in the insect hemocoel. These findings demonstrate that MrGpa2 and MrGpa4 exhibit functional redundancy and contribute to the vegetative growth, stress tolerance, and pest control potential in M. robertsii.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3