Near-Fall Detection in Unexpected Slips during Over-Ground Locomotion with Body-Worn Sensors among Older Adults

Author:

Wang ShuaijieORCID,Miranda FabioORCID,Wang Yiru,Rasheed Rahiya,Bhatt Tanvi

Abstract

Slip-induced falls are a growing health concern for older adults, and near-fall events are associated with an increased risk of falling. To detect older adults at a high risk of slip-related falls, this study aimed to develop models for near-fall event detection based on accelerometry data collected by body-fixed sensors. Thirty-four healthy older adults who experienced 24 laboratory-induced slips were included. The slip outcomes were first identified as loss of balance (LOB) and no LOB (NLOB), and then the kinematic measures were compared between these two outcomes. Next, all the slip trials were split into a training set (90%) and a test set (10%) at sample level. The training set was used to train both machine learning models (n = 2) and deep learning models (n = 2), and the test set was used to evaluate the performance of each model. Our results indicated that the deep learning models showed higher accuracy for both LOB (>64%) and NLOB (>90%) classifications than the machine learning models. Among all the models, the Inception model showed the highest classification accuracy (87.5%) and the largest area under the receiver operating characteristic curve (AUC), indicating that the model is an effective method for near-fall (LOB) detection. Our approach can be helpful in identifying individuals at the risk of slip-related falls before they experience an actual fall.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3