Author:
Wang Yuan-Heng,Hsu Yung-Chia,You Gene,Yen Ching-Lien,Wang Chi-Ming
Abstract
This study proposed a two-phase risk analysis scheme for flood management considering flood inundation losses, including: (1) simplified qualitative-based risk analysis incorporating the principles of failure mode and effect analysis (FMEA) to identify all potential failure modes associated with candidate flood control measures, to formulate a remedial action plan aiming for mitigating the inundation risk within an engineering system; and (2) detailed quantitative-based risk analysis to employ numerical models to specify the consequences including flood extent and resulting losses. Conventional qualitative-based risk analysis methods have shown to be time-efficient but without quantitative information for decision making. However, quantitative-based risk analysis methods have shown to be time- and cost- consuming for a full spectrum investigation. The proposed scheme takes the advantages of both qualitative-based and quantitative-based approaches of time-efficient, cost-saving, objective and quantitative features for better flood management in term of expected loss. The proposed scheme was applied to evaluate the Chiang-Yuan Drainage system located on Lin-Bien River in southern Taiwan, as a case study. The remedial action plan given by the proposed scheme has shown to greatly reduce the inundation area in both highlands and lowlands. These measures was investigated to reduce the water volume in the inundation area by 0.2 million cubic meters, even in the scenario that the flood recurrence interval exceeded the normal (10-year) design standard. Our results showed that the high downstream water stage in the downstream boundary may increase the inundation area both in downstream and upstream and along the original drainage channel in the vicinity of the diversion. The selected measures given by the proposed scheme have shown to substantially reduce the flood risk and resulting loss, taking account of various scenarios: short duration precipitation, decreased channel conveyance, pump station failure and so forth.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献