Bag-of-Visual-Words for Cattle Identification from Muzzle Print Images

Author:

Awad Ali IsmailORCID,Hassaballah M.ORCID

Abstract

Cattle, buffalo and cow identification plays an influential role in cattle traceability from birth to slaughter, understanding disease trajectories and large-scale cattle ownership management. Muzzle print images are considered discriminating cattle biometric identifiers for biometric-based cattle identification and traceability. This paper presents an exploration of the performance of the bag-of-visual-words (BoVW) approach in cattle identification using local invariant features extracted from a database of muzzle print images. Two local invariant feature detectors—namely, speeded-up robust features (SURF) and maximally stable extremal regions (MSER)—are used as feature extraction engines in the BoVW model. The performance evaluation criteria include several factors, namely, the identification accuracy, processing time and the number of features. The experimental work measures the performance of the BoVW model under a variable number of input muzzle print images in the training, validation, and testing phases. The identification accuracy values when utilizing the SURF feature detector and descriptor were 75%, 83%, 91%, and 93% for when 30%, 45%, 60%, and 75% of the database was used in the training phase, respectively. However, using MSER as a points-of-interest detector combined with the SURF descriptor achieved accuracies of 52%, 60%, 67%, and 67%, respectively, when applying the same training sizes. The research findings have proven the feasibility of deploying the BoVW paradigm in cattle identification using local invariant features extracted from muzzle print images.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel and convenient lying cow identification method based on YOLOX and CowbodyNet: A study with applications in a barn;Computers and Electronics in Agriculture;2024-10

2. AI Powered Livestock Recognization System;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

3. SCS-YOLOv5s: A cattle detection and counting method for complex breeding environment;Journal of Intelligent & Fuzzy Systems;2024-03-21

4. Early detection of infectious bovine keratoconjunctivitis with artificial intelligence;Veterinary Research;2023-12-15

5. Cattle AutoID: Biometric for Cattle Identification: Cattle AutoID;Proceedings of the 8th International Conference on Sustainable Information Engineering and Technology;2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3