Contactless Monitoring of Microcirculation Reaction on Local Temperature Changes

Author:

Volynsky ,Margaryants ,Mamontov ,Kamshilin

Abstract

Assessment of skin blood flow is an important clinical task which is required to study mechanisms of microcirculation regulation including thermoregulation. Contactless assessment of vasomotor reactivity in response to thermal exposure is currently not available. The aim of this study is to show the applicability of the imaging photoplethysmography (IPPG) method to measure quantitatively the vasomotor response to local thermal exposure. Seventeen healthy subjects aged 23 ± 7 years participated in the study. A warm transparent compress applied to subject’s forehead served as a thermal impact. A custom-made IPPG system operating at green polarized light was used to monitor the subject’s face continuously and simultaneously with skin temperature and electrocardiogram (ECG) recordings. We found that the thermal impact leads to an increase in the amplitude of blood pulsations (BPA) simultaneously with the skin temperature increase. However, a multiple increase in BPA remained after the compress was removed, whereas the skin temperature returned to the baseline. Moreover, the BPA increase and duration of the vasomotor response was associated with the degree of external heating. Therefore, the IPPG method allows us to quantify the parameters of capillary blood flow during local thermal exposure to the skin. This proposed technique of assessing the thermal reactivity of microcirculation can be applied for both clinical use and for biomedical research.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference22 articles.

1. The skin’s role in human thermoregulation and comfort;Arens,2006

2. Skin temperature: its role in thermoregulation

3. Thermal comfort;Nagashima,2018

4. Thermal comfort: A review paper

5. Utility of the cold pressor test to predict future cardiovascular events

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3