Detecting Growth Phase Shifts Based on Leaf Trait Variation of a Canopy Dipterocarp Tree Species (Parashorea chinensis)

Author:

Deng Yun,Deng Xiaobao,Dong Jinlong,Zhang Wenfu,Hu Tao,Nakamura AkihiroORCID,Song Xiaoyang,Fu Peili,Cao MinORCID

Abstract

Canopy species need to shift their adaptive strategy to acclimate to very different light environments as they grow from seedlings in the understory to adult trees in the canopy. However, research on how to quantitively detect ecological strategy shifts in plant ontogeny is scarce. In this study, we hypothesize that changes in light and tree height levels induce transitions in ecological strategies, and growth phases representing different adaptive strategies can be classified by leaf trait variation. We examined variations in leaf morphological and physiological traits across a vertical ambient light (represented by the transmittance of diffuse light, %TRANS) and tree height gradient in Parashorea chinensis, a large canopy tree species in tropical seasonal rainforest in Southwestern China. Multivariate regression trees (MRTs) were used to detect the split points in light and height gradients and classify ontogenetic phases. Linear piecewise regression and quadratic regression were used to detect the transition point in leaf trait responses to environmental variation and explain the shifts in growth phases and adaptive strategies. Five growth phases of P. chinensis were identified based on MRT results: (i) the vulnerable phase, with tree height at less than 8.3 m; (ii) the suppressed phase, with tree height between 8.3 and 14.9 m; (iii) the growth release phase, with tree height between 14.9 and 24.3 m; (iv) the canopy phase, with tree height between 24.3 and 60.9 m; and (v) the emergent phase, with tree height above 60.9 m. The suppressed phase and canopy phase represent “stress-tolerant” and “competitive” strategies, respectively. Light conditions drive the shift from the “stress-tolerant” to the “competitive” strategy. These findings help us to better understand the regeneration mechanisms of canopy species in forests.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3