Temperature Reduction in Urban Surface Materials through Tree Shading Depends on Surface Type Not Tree Species

Author:

T.U.N. KaluarachichiORCID,M.G. TjoelkerORCID,S. PfautschORCID

Abstract

Trees play a vital role in urban cooling. The present study tested if key canopy characteristics related to tree shade could be used to predict the cooling potential across a range of urban surface materials. During the austral summer of 2018–2019, tree and canopy characteristics of 471 free-standing trees from 13 species were recorded across Greater Sydney, Australia. Stem girth and tree height, as well as leaf area index and ground-projected crown area was measured for every tree. Surface temperatures were recorded between noon (daylight saving time) and 3:00 p.m. under the canopy of each tree in the shade and in full sun to calculate the temperature differential between adjacent sunlit and shaded surfaces (∆Ts). The limited control over environmental parameters was addressed by using a large number of randomly selected trees and measurement points of surface temperatures. Analyses revealed that no systematic relationship existed among canopy characteristics and ∆Ts for any surface material. However, highly significant differences (p < 0.001) in ∆Ts existed among surface materials. The largest cooling potential of tree shade was found by shading bark mulch (∆Ts = −24.8 °C ± 7.1), followed by bare soil (∆Ts = −22.1 °C ± 5.5), bitumen (∆Ts = −20.9 °C ± 5.8), grass (∆Ts = −18.5 °C ± 4.8) and concrete pavers (∆Ts = −17.5 °C ± 6.0). The results indicate that surface material, but not the tree species, matters for shade cooling of common urban surfaces. Shading bark mulch, bare soil or bitumen will provide the largest reductions in surface temperature, which in turn results in effective mitigation of radiant heat. This refined understanding of the capacity of trees to reduce thermal loads in urban space can increase the effectiveness of urban cooling strategies.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3