Swelling Behaviour of Bamboo (Phyllostachys pubescens)

Author:

Roszyk Edward1ORCID,Kropaczewski Radosław1,Mania Przemysław1ORCID,Broda Magdalena1ORCID

Affiliation:

1. Department of Wood Science and Thermal Techniques, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznan, Poland

Abstract

Bamboo is a plant with various applications. As a natural, renewable material that exhibits good mechanical performance, it seems to be an interesting alternative to wood, which has become a scarce and expensive commodity. However, comprehensive knowledge of its properties is necessary to maximise its potential for various industrial purposes. The swelling behaviour of bamboo is one of the features that has not yet been sufficiently investigated. Therefore, in this research, we aimed to measure and analyse the swelling pressure and kinetics of bamboo blocks. The results show that similar to wood, the swelling kinetics of bamboo depend on its density: the denser the tissue, the higher the maximum swelling value recorded. The maximum tangential swelling measured was about 5%–6%, which is lower than the value for the most commonly used wood species. Swelling pressure ranged from 1.16 MPa to 1.39 MPa, depending on the bamboo density: the denser the sample, the shorter the time required to reach maximum swelling pressure. Like in wood, the smallest linear increase in size due to swelling was observed in the longitudinal direction (0.71%). However, opposite to wood, more pronounced swelling was recorded in the radial direction (over 7%) than in the tangential direction (nearly 6%). The results show that bamboo’s swelling behaviour makes it a good material for use in variable humidity conditions, being more favourable than the unmodified wood of many species.

Publisher

MDPI AG

Subject

Forestry

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3