Comparison of Xylem Anatomy and Hydraulic Properties in Black Locust Trees at Two Growth Stages in Semiarid China

Author:

Ma Changkun1,Zhang Xi1,Yao Qian1,Zhou Beibei1,Wang Quanjiu1,Shao Mingan2

Affiliation:

1. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China

2. College of Natural Resources and Environment, Northwest A&F University, Xianyang 712100, China

Abstract

Tree species transitioning between different developmental phases requires homeostatic adjustments in order to maintain the integrity of the tree hydraulic system. Hence, adjustments related to hydraulic traits (e.g., xylem conduit diameter) are of key functional significance. However, critical information on the differences between different developmental stages is rare. Using sapwood samples from 36 black locust trees with different growth stages (actively growing and declining stages) and a soil water gradient along a hillslope, xylem conduits at stem apexes and breast height (1.3 m above ground) stems were measured. The results showed marked differences in vascular traits between actively growing and declining trees. In contrast to actively growing trees, declining trees exhibited a reduction in conduit diameters accompanied by increased frequency with a positively skewed distribution and a subsequent decline in cumulative theoretical hydraulic conductivity. Across all sampled trees, the hydraulically weighted mean conduit diameter tapered acropetally from breast height to the stem apex. The extent of conduit tapering in actively growing trees (0.244, 95% CI 0.201–0.287) aligned with predictions from the hydraulic optimality model. Conversely, trees in a declining status displayed significantly reduced conduit tapering (0.175, 95% CI 0.146–0.198), indicating an elevation in hydraulic resistance with increasing tree height. Variations in hydraulic properties predominantly resulted from differences in tree height rather than variations in stem diameter or soil water content. The correlation between conduit diameter and soil water content in both actively growing and declining trees stemmed indirectly from variations in tree height rather than presenting a direct response to drought stress.

Funder

National Natural Science Foundation of China

Scientific Research Foundation of Xi’an University of Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3