Coverage Path Planning and Point-of-Interest Detection Using Autonomous Drone Swarms

Author:

Bezas KonstantinosORCID,Tsoumanis GeorgiosORCID,Angelis Constantinos T.,Oikonomou KonstantinosORCID

Abstract

Unmanned Aerial Vehicles (UAVs) or drones presently are enhanced with miniature sensors that can provide information relative to their environment. As such, they can detect changes in temperature, orientation, altitude, geographical location, electromagnetic fluctuations, lighting conditions, and more. Combining this information properly can help produce advanced environmental awareness; thus, the drone can navigate its environment autonomously. Wireless communications can also aid in the creation of drone swarms that, combined with the proper algorithm, can be coordinated towards area coverage for various missions, such as search and rescue. Coverage Path Planning (CPP) is the field that studies how drones, independently or in swarms, can cover an area of interest efficiently. In the current work, a CPP algorithm is proposed for a swarm of drones to detect points of interest and collect information from them. The algorithm’s effectiveness is evaluated under simulation results. A set of characteristics is defined to describe the coverage radius of each drone, the speed of the swarm, and the coverage path followed by it. The results show that, for larger swarm sizes, the missions require less time while more points of interest can be detected within the area. Two coverage paths are examined here—parallel lines and spiral coverage. The results depict that the parallel lines coverage is more time-efficient since the spiral increases the required time by an average of 5% in all cases for the same number of detected points of interest.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference49 articles.

1. Swarm Troopers: How Small Drones Will Conquer the World;Hambling,2015

2. Remote sensing technologies for post-earthquake damage assessment: A case study on the 2016 Kumamoto earthquake;Yamazaki;Proceedings of the 6th Asia Conference on Earthquake Engineering,2016

3. Early forest fire detection using drones and artificial intelligence;Kinaneva;Proceedings of the 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO),2019

4. A distributed control framework for a team of unmanned aerial vehicles for dynamic wildfire tracking;Pham;Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),2017

5. A deviation flow refueling location model for continuous space: A commercial drone delivery system for urban areas;Hong,2017

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3