Detecting People on the Street and the Streetscape Physical Environment from Baidu Street View Images and Their Effects on Community-Level Street Crime in a Chinese City

Author:

Yue HanORCID,Xie Huafang,Liu LinORCID,Chen Jianguo

Abstract

The occurrence of street crime is affected by socioeconomic and demographic characteristics and is also influenced by streetscape conditions. Understanding how the spatial distribution of street crime is associated with different streetscape features is significant for establishing crime prevention and city management strategies. Conventional data sources that quantify people on the street and streetscape characteristics, such as questionnaires, field surveys, or manual audits, are labor-intensive, time-consuming, and unable to cover a large area with a sufficient spatial resolution. Emerging cell phone and social media data have been used to measure ambient population, but they cannot distinguish between the street and indoor populations. This study addresses these limitations by combining Baidu Street View (BSV) images, deep learning algorithms, and spatial statistical regression models to examine the influences of people on the street and in the streetscape physical environment on street crime in a large Chinese city. First, we collected fine-grained street view images from the Baidu Map website. Then, we constructed a Faster R-CNN network to detect discrete elements with distinct outlines (such as persons) in each image. From this, we counted the number of people on the street in every BSV image and finally obtained the community-level total amounts. Additionally, the PSPNet network was developed for pixel-wise semantic segmentation to determine the proportions of other streetscape features such as buildings in each BSV image, based on which we obtained their community-level averages. The quantitative measurement of people on the street and a set of streetscape features that had potential influences on crime were finally derived by combining the outputs of two deep learning networks. To account for the spatial autocorrelation effect and distributional characteristics of crime data, we constructed a set of spatial lag negative binomial regression models to investigate how three types of street crime (i.e., total crime, property crime, and violent crime) were affected by the number of people on the street and the streetscape-built conditions. The models also controlled the effect of socioeconomic and demographic factors, land use features, the formal surveillance level, and transportation facilities. The models with people on the street and streetscape environment features had noticeable performance improvements, demonstrating the necessity for accounting for the effect of these factors when understanding street crime. Specifically, the number of people on the street had significantly positive impacts on the total street crime and street property crime. However, no statistically significant impact was found on street violent crime. The average proportions of the paths, buildings, and trees were associated with significantly lower street crime among physical streetscape features. Additionally, the statistical significances of most control variables conformed to previous research findings. This study is the first to combine Street View images and deep learning algorithms to retrieve the number of people on the street and the features of the visual streetscape environment to understand street crime.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference78 articles.

1. Social Change and Crime Rate Trends: A Routine Activity Approach

2. A theoretical model of crime hot spot generation;Brantingham;Stud. Crime Crime Prev.,1999

3. From criminals to criminal contexts: Reorienting criminal justice research and policy;Weisburd;Adv. Criminol. Theory,2002

4. Crime and residential security shutters in an Australian suburb: Exploring perceptions of ‘Eyes on the Street’, social interaction and personal safety

5. Built environment and violent crime: An environmental audit approach using Google Street View

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3