SmartEle: Smart Electricity Dashboard for Detecting Consumption Patterns: A Case Study at a University Campus

Author:

Jing ChangfengORCID,Guo Shasha,Zhang Hongyang,Lv Xinxin,Wang Dongliang

Abstract

To achieve Sustainable Development Goal 7 (SDG7), it is essential to detect the spatiotemporal patterns of electricity consumption, particularly the spatiotemporal heterogeneity of consumers. This is also crucial for rational energy planning and management. However, studies investigating heterogeneous users are lacking. Moreover, existing works focuses on mathematic models to identify and predict electricity consumption. Additionally, owing to the complex non-linear interrelationships, interactive visualizations are more effective in detecting patterns. Therefore, by combining geospatial dashboard knowledge and interactive visualization technology, a Smart Electricity dashboard (SmartEle) was designed and developed to interactively visualize big electrical data and interrelated factors. A university campus as the study area. The SmartEle system addressed three challenges. First, it permitted user group-oriented monitoring of electricity consumption patterns, which has seldom been considered in existing studies. Second, a visualization-driven data mining model was proposed, and an interactive visualization dashboard was designed to facilitate the perception of electricity usage patterns at different granularities and from different perspectives. Finally, to deal with the non-linear features of electricity consumption, the ATT-LSTM machine learning model to support multivariate collaborative predicting was proposed to improve the accuracy of short-term electricity consumption predictions. The results demonstrated that the SmartEle system is usable for electricity planning and management.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

The Pyramid Talent Training Project of BUCEA

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3