Modelling Fire Behavior to Assess Community Exposure in Europe: Combining Open Data and Geospatial Analysis

Author:

Palaiologou PalaiologosORCID,Kalabokidis Kostas,Day Michelle A.,Ager Alan A.,Galatsidas SpyrosORCID,Papalampros LamprosORCID

Abstract

Predicting where the next large-scale wildfire event will occur can help fire management agencies better prepare for taking preventive actions and improving suppression efficiency. Wildfire simulations can be useful in estimating the spread and behavior of potential future fires by several available algorithms. The uncertainty of ignition location and weather data influencing fire propagation requires a stochastic approach integrated with fire simulations. In addition, scarcity of required spatial data in different fire-prone European regions limits the creation of fire simulation outputs. In this study we provide a framework for processing and creating spatial layers and descriptive data from open-access international and national databases for use in Monte Carlo fire simulations with the Minimum Travel Time fire spread algorithm, targeted to assess cross-boundary wildfire propagation and community exposure for a large-scale case study area (Macedonia, Greece). We simulated over 300,000 fires, each independently modelled with constant weather conditions from a randomly chosen simulation scenario derived from historical weather data. Simulations generated fire perimeters and raster estimates of annual burn probability and conditional flame length. Results were used to estimate community exposure by intersecting simulated fire perimeters with community polygons. We found potential ignitions can grow large enough to reach communities across 27% of the study area and identified the top-50 most exposed communities and the sources of their exposure. The proposed framework can guide efforts in European regions to prioritize fuel management activities in order to reduce wildfire risk.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3